
Chapter 33 - Electric Fields and Potential

Chapter 34 - Electric Current

Electric Force acts through a field

An electric field surrounds every electric charge. It exerts a force that causes electric charges to move.

Electric Potential Energy

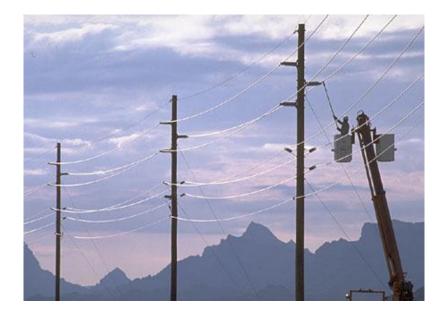
The amount of work required to move a charge between two points and overcome electrical repulsion = the energy gained by the charge If the charge gets released, it will accelerate and the potential energy

will become kinetic energy

Electric Potential

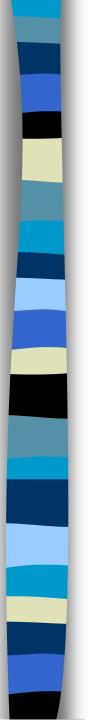
How much potential energy is in each individual charge

Electric potential = <u>electrical potential energy</u> charge


1 Volt = 1 joule coulomb

Electric Potential Difference

- The SI unit of electric potential difference is the VOLT
- Electric potential is also called <u>Voltage</u>
- The electric pressure created by the voltage is what produces a flow of charge it's the "push" that gets them moving.


A flow of charge is called an electric current Electric current is the amount of charge that passes a given point per unit of time

The symbol for current is (I) The unit in which current is expressed is the ampere (A)



- Only occurs when there is a *potential difference* or difference in voltage
- The flow of charge will continue until both ends reach a common potential.
- No potential difference = no current
- Always flows from <u>high</u> voltage to <u>low</u> voltage

It's like...

- Water flowing from high pressure to low pressure
- Fig 34.1 on pg 532
 - <u>http://hyperphysics.ph</u> <u>Y-</u>
 - astr.gsu.edu/Hbase/el ectric/watcir.html#c2
- Things falling b/c of gravity
 - Temperature going from high to low

What if you take away the voltage difference?

- Then no current will flow. In order for lights to work – there has to be continual flow from high voltage to low voltage.
- Voltage source provides a potential difference; acts as an "electric pump"
 - Dry cells, wet cells, and generators
 - Wall sockets also have a voltage difference across the two outlet holes provided by a generator at a power plant (averages 120 volts)

Voltage vs. Current

Voltage is the pressure that pushes the current, but it doesn't go anywhere.

Current is the flow of charges that is pushed by voltage.

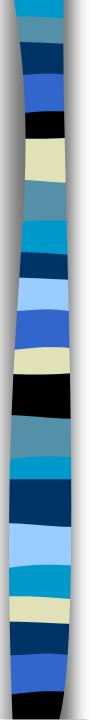
I ampere measures the flow of 1 coulomb of charge per second past a given point

Current-carrying wire

Does it have a charge?

- No, because even though electrons are flowing through the wire the net charge remains zero.
- The number of electrons entering the wire equals the number of electrons leaving the wire

Resistance – pg 534


Opposition to the flow of electric charge is resistance

Sources???

-Length, size, temperature, and conductivity of the wire

The symbol for resistance is (R)

The unit of resistance is the ohm
 (Ω)

Ohm's Law

Ohm's Law identifies the relationship among current, voltage, and resistance

 Ohm's Law states that the current in a wire (I) is equal to the voltage (V) divided by the resistance (R)

Current = <u>Voltage</u> Resistance

 $I = \frac{V}{R}$

 $Amperes = \frac{Volts}{Ohms}$

AC / DC

- Direct Current (DC) travels in one direction.
 - Example: a battery the electrons move in the same direction from the repelling negative terminal toward the positive terminal
- Alternating Current (AC) continually reverses its direction.
 - Electrons move one direction and then the opposite, alternating back and forth

http://www.teachnet.ie/torourke/basics.htm

A special arrangement of four diodes can actually convert AC into DC

■ What's a diode??? – pg 540

Electrons in a Wire

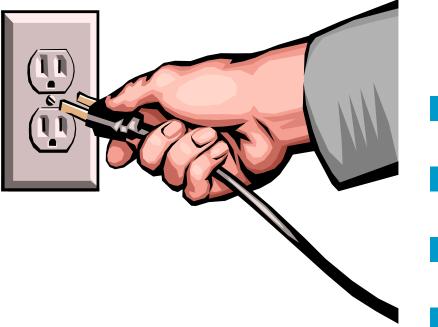
- Electrons move very slowly in a wire. Electrons in an AC circuit just pace back and forth.
- The electric field races along the wire very rapidly.
- Electrons moving in the circuit is what allows the circuit components to work.

Electric Power

- The rate at which electrical energy is converted into another form – mechanical energy, heat, light
- Electric power = current x voltage
- 1 watt = 1 ampere x 1 volt
- Kilowatt = 1000 watts
- Kilowatt-hour = amount of energy consumed in 1 hour at a rate of 1 kilowatt


Electric Circuits

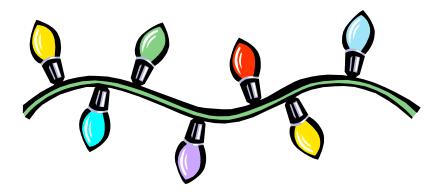
When a wire is connected to the terminals of a source, a complete path called a **CIRCUIT** is formed


Electric Circuits

An electric circuit provides a complete, closed path for an electric current



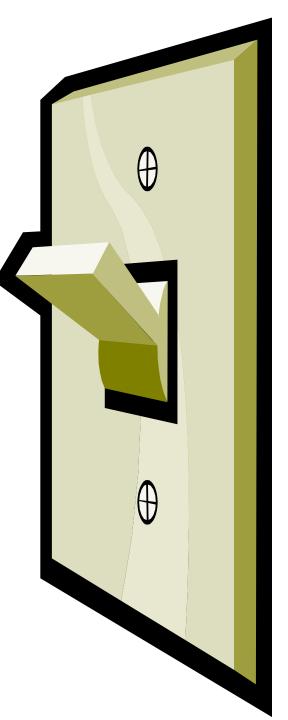
Parts of a Circuit



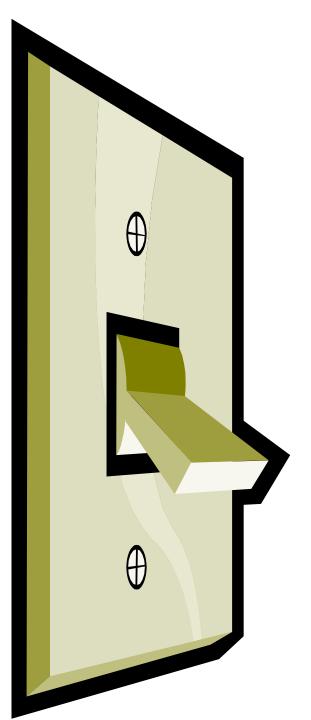

Source of energy load resistance wires switch

Series Circuit

There is only one path for the electrons
to take



Parallel Circuits


The different parts of an electric circuit are on separate branches

If there is a break in a parallel circuit, electrons can still move through the other branches

Open Switch

Closed Switch

