

Instructor: Mr. Barry Wagner E-Mail Address: bwagner@dentonisd.org Planning Period: B3, B4 Phone: 940-369-2067 Tutorials: M-Th 4:10-4:50

Course Description

IB Computer Science HL 2 emphasizes problem solving, algorithm development, and program design using advanced data structures including stacks, queues, linked lists, binary trees, and hash tables.

Resources

Web-based curriculum (<u>http://bwagner.org</u>)

Aims and Objectives

It is in this context that the Diploma Programme computer science course should aim to:

- 1. provide opportunities for study and creativity within a global context that will stimulate and challenge students developing the skills necessary for independent and lifelong learning
- 2. provide a body of knowledge, methods and techniques that characterize computer science
- 3. enable students to apply and use a body of knowledge, methods and techniques that characterize computer science
- 4. demonstrate initiative in applying thinking skills critically to identify and resolve complex problems
- 5. engender an awareness of the need for, and the value of, effective collaboration and communication in resolving complex problems
- 6. develop logical and critical thinking as well as experimental, investigative and problemsolving skills
- 7. develop and apply the students' information and communication technology skills in the study of computer science to communicate information confidently and effectively
- 8. raise awareness of the moral, ethical, social, economic and environmental implications of using science and technology
- 9. develop an appreciation of the possibilities and limitations associated with continued developments in IT systems and computer science
- 10. encourage an understanding of the relationships between scientific disciplines and the overarching nature of the scientific method.

Students will be expected to fulfill the following objectives:

- 1. Know and understand:
 - a. relevant facts and concepts
 - b. appropriate methods and techniques
 - c. computer science terminology
 - d. methods of presenting information.
- 2. Apply and use:
 - a. relevant facts and concepts
 - b. relevant design methods and techniques
 - c. terminology to communicate effectively
 - d. appropriate communication methods to present information.
- 3. Construct, analyse, evaluate and formulate:
 - a. success criteria, solution specifications including task outlines, designs and test plans
 - b. appropriate techniques within a specified solution.
- 4. Demonstrate the personal skills of cooperation and perseverance as well as appropriate technical skills for effective problem-solving in developing a specified product.

IB Assessment

Student assessment is carried out by a combination of an external examination conducted at the end of the course, and an internal assessment, carried out by the teacher. The following tables show the approximate percentage weighting in a typical examination session for each of the assessment objectives across each of the components.

Assessment objective	Paper 1	Paper 2	Paper 3	Internal assessment	Overall
1. Demonstrating knowledge and understanding	21	10	9	6	46
2. Applying and using	12	6	7	5	30
3. Constructing, analysing, evaluating and formulating	7	4	4	3	18
4. Using skills	n/a	n/a	n/a	6	6
Component weighting	40%	20%	20%	20%	100%

Internal Assessment (IA)

As mentioned above a large part of a student's assessment is a component called the Internal Assessment (IA). In this course the IA is a computer program that a student must design and implement for a specific client. The program must be developed using the following criterion.

Criterion		
Criterion A: Planning		
Criterion B: Solution overview		
Criterion C: Development		
Criterion D: Functionality and extensibility of product		
Criterion E: Evaluation		

There will be specific due dates for each of the 5 criterion. If a student does not complete the criterion by the assigned due date mandatory tutorials will be assigned until the student completes the work. A significant amount of class time will alotted for students to work on their IAs.

Grading Policy

• Refer to the District Approved Grading Policy

Course Content and TimeLine

Unit 1 Number Systems	Week 1
- Number Systems	
- Number Conversion	
- Data Representation	
Unit 2 System Fundamentals	Week 2-3
- What is a System	WOOK 2 5
- System Planning	
- System Design	
Unit 3 Pseudo code and Flowcharts	Week 4
- Pseudo code	
- Flowcharts	
Unit 4 Tracing an Algorithm	Week 5
- Trace Tables	
Unit 6 Two Dimensional Arrays	Week 7-8
- 2D Arrays	
- Manipulating 2D Arrays	
Unit 7 Recursion	Week 9
- Recursive Thinking	

- Recursive Programming				
End of 1st 9 Weeks				
Unit 8 Abstract Data Types(ADT)	Week 11-13			
- ADT				
- List				
- Stack				
Unit 8 Abstract Data Types(ADT)	Week 14-15			
- Queue				
- Tree				
Unit 9 LinkedList	Week 16-18			
- LinkedList				
- Generics				
End of 2 nd 9 Weeks				
Unit 10 Stack	Week 19-21			
Unit 11 Queue	Week 21-23			
Unit 12 Binary Tree	Week 24-27			
- Binary Tree				
- Binary Search Tree				
End of 3 rd 9 Weeks				
Unit 13 Hash Table	Week 30-31			
- Hashing				
- Collisions				
Unit 14 Case Study	Week 32-33			
Unit 15 Review	Week 34-35			