Unit 2 – Functions Continuity and End Behavior (Unit 2.3)

William (Bill) Finch

Mathematics Department Denton High School

Lesson Goals

When you have completed this lesson you will:

- Identify whether a function is continuous.
- Identify 3 types of discontinuities.
- Describe the end-behavior of a function.

Continuity	
000000	

Continuity

The graph of a function is **continuous** if it has no breaks or gaps.

W. Finch			DHS Math Dept
Continuity / End Behavior			
	Continuity		
	000000	0000	

Discontinuities

Continuity	
0000000	

Limits

As f(x) approaches some output *L* as the input *x* approaches some input *c*, then the **limit** of f(x) as *x* approaches *c* is *L*.

 $\lim_{x\to c} f(x) = L$

Continuity / End Behavior		
	Continuity	
	0000000	

Continuity Test

A function f(x) is continuous at x = c if:

- f(c) exists
- *f*(*x*) approaches the same output value from either side of *c* (this means lim_{x→c} *f*(*x*) exists)
- The output value the function approaches from either side of c is f(c) (this means lim_{x→c} f(x) = f(c))

Continuity		
0000000	0000	

Determine whether $f(x) = \frac{1}{2x+1}$ is continuous at x = 0.5 using the continuity test. If discontinuous, identify the type of discontinuity.

Continuity / End Behavior		
	Continuity	
	0000000	

Example 2

Determine whether $f(x) = \frac{1}{x-1}$ is continuous at x = 1 using the continuity test. If discontinuous, identify the type of discontinuity.

Continuity		
000000	0000	

Determine whether $f(x) = \frac{x-2}{x^2-4}$ is continuous at x = 2 using the continuity test. If discontinuous, identify the type of discontinuity.

W. Finch			DHS Math Dept
Continuity / End Behavior			
		End Behavior	
	0000000	0000	

End Behavior of a Function

The **end behavior** of a function is a description of the output of the function as x goes left and right towards negative and positive infinity.

	End Behavior	
	0000	

Use the graph of $f(x) = x^3 - x^2 - 4x + 4$ to describe its end behavior.

W. Finch			DHS Math Dept
Continuity / End Behavior			
		End Behavior	
	0000000	0000	

Example 5

Use the graph of $g(x) = \frac{x+2}{x^2 - x - 2}$ to describe its end behavior.

Continuity 0000000	End Behavior	

In physics, the symmetric energy function is

$$E=\frac{x^2+y^2}{2}$$

If the *y*-value is held constant, what happens to the value of symmetric energy when the *x*-value approaches $-\infty$?

		DHS Math Dept
Continuity / End Behavior		13 / 14
		Summary

What You Learned

You can now:

- Identify whether a function is continuous.
- Identify 3 types of discontinuities.
- Describe the end-behavior of a function.
- ▶ Do problems Chap 1.3 #1-11 odd, 23-31 odd