Unit 5 – Exponential/Logarithmic Functions Exponential Functions (Unit 5.1)

William (Bill) Finch

Mathematics Department Denton High School

Introduction			Applications 0000000000	
Lesson	Goals			

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.

Introduction		Applications 0000000000	

Lesson Goals

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.

DU			
	N /1	ath.	
		aun	

Introduction			Applications 0000000000	
Lassan	Caala			

Lesson Goals

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.

Introduction			Applications 0000000000	
Laccon	Coole			

Lesson Goals

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.

Exponential Function		Applications 0000000000	

Exponential Functions

A base-b exponential function has the form

$$f(x) = ab^x$$

where $a \neq 0$, b > 0 and $b \neq 1$, and x is any real number.

W. Finch	DHS Math Dept
Exponential	3 / 25

	Exponential Function	Transformations 0000	Base <i>e</i> 0000	Applications 0000000000	
Exponent	tial Growth	f(x) =	ab ^x ,	b > 1	
Domain	$(-\infty,$	∞)		у 1	
Range	$(0,\infty)$)			
y-Interce	pt (0, <i>a</i>)				
x-Interce	pt none				
Increasing	g $(-\infty,$	∞)		(0, <i>a</i>)	
Hor Asyn	nptote <i>x</i> -axis			ł	$\longrightarrow x$
Continuo	ous $(-\infty,$	∞)			
End Beha	avior $\lim_{x\to -\infty}$	f(x) = 0			
	$\lim_{x\to\infty}$	$_{\infty}f(x)=\infty$			

- **-** - •

- ◀ □ ▶

Exponential Function		Applications 000000000	

Sketch the graph of $f(x) = 2^x$. Then describe the following:

- 1. Domain
- 2. Range
- 3. Intercept
- 4. Asymptote
- 5. End behavior
- 6. Interval incr/decr

→

Exponential

	Transformations ●000	Applications 0000000000	

Translations

Horizontal Translation c Units

Vertical Translation c Units

W. Finch	DHS Math Dept
Exponential	7 / 25

Introduction	Exponential Function	Transformations 0●00	Base <i>e</i> 0000	Applications 0000000000	Summary
Deflect	•				
Reflect	IONS				
I	Reflect wrt <i>x</i> -axis		Reflec	t wrt <i>y</i> -axis	
f(x)	$= b^{\times}$	-	$f(x) = b^{x}$		

W. Finch	DHS Math Dept
Exponential	8 / 25

	Transformations 00●0	Applications 000000000	

Dilations

W. Finch	DHS Math Dept
Exponential	9 / 25

	Transformations 000●	Applications 0000000000	

Use the graph of f to describe the transformation that produces the graph of g.

1.
$$f(x) = 4^x$$
, $g(x) = 4^{x+2}$

2.
$$f(x) = 3^x$$
, $g(x) = 2(3^x) - 1$

3.
$$f(x) = 2^x$$
, $g(x) = 2^{-x}$

< □ >

W. Finch

Exponential

	Base <i>e</i> ●000	Applications 0000000000	

The Natural Base e

- Named for the Swiss mathematician Leonhard Euler (pronounced "Oiler").
- Also called the natural base.
- Irrational number $e \approx 2.71828...$

Graph $y_1 = \left(1 + \frac{1}{x}\right)^{*}$ and $y_2 = e$ on the same set of axes. What happens the graph of y_1 as x increases?

Note that e can be found two places on the calculator keyboard: (1) the second function of the division key, and (2) the second function of the LN key.

	Base <i>e</i> ●000	Applications 0000000000	

The Natural Base e

- Named for the Swiss mathematician Leonhard Euler (pronounced "Oiler").
- Also called the natural base.
- Irrational number $e \approx 2.71828...$

Graph $y_1 = \left(1 + \frac{1}{x}\right)^x$ and $y_2 = e$ on the same set of axes. What happens the graph of y_1 as x increases?

Note that e can be found two places on the calculator keyboard: (1) the second function of the division key, and (2) the second function of the LN key.

	Base <i>e</i> 0●00	Applications 0000000000	

Graph of
$$f(x) = e^x$$

Domain	$(-\infty,\infty)$	0	y ↑ /
Range	$(0,\infty)$	0	
y-Intercept	(0,1)	0	
x-Intercept	none	4	
Increasing	$(-\infty,\infty)$	(0,1)	
Hor Asymptote	<i>x</i> -axis	-3 -2 -1	
Continuous	$(-\infty,\infty)$		
End Behavior	$\lim_{x\to -\infty} f(x) = 0$		
	$\lim_{x\to\infty}f(x)=\infty$		

- ∢ □ →

		Base <i>e</i> 00●0	Applications 000000000	
Evama	0.3			

Use a calculator to evaluate $f(x) = e^x$ for the indicated values of x.

1. *f*(−3)

2. *f*(2)

DHS Math De	
13 /	25

• • •

Exponential

	Base <i>e</i> 000●	Applications 0000000000	

Use the graph of $f(x) = e^x$ to describe the transformation that results in the graph of each function.

1.
$$g(x) = e^{4x}$$

2.
$$h(x) = -e^x + 3$$

$$3. \ j(x) = \frac{1}{2}e^x$$

< □ >

W. Finch	DHS Math Dept
Exponential	14 / 25

		Applications •000000000	

Suppose an initial amount of money (called the principal) P is invested at an annual interest rate r and **compounded** once a year. This means that at the end of the first year the earned interest is added to the principal creating a new balance A_1 :

$$A_0 = P$$

$$A_1 = A_0 + A_0 r$$

$$A_1 = A_0 (1 + r)$$

$$A_1 = P(1 + r)$$

I □ →

W. Finch

Exponential

		Applications •000000000	

Suppose an initial amount of money (called the principal) P is invested at an annual interest rate r and **compounded** once a year. This means that at the end of the first year the earned interest is added to the principal creating a new balance A_1 :

$$A_0 = P$$
$$A_1 = A_0 + A_0 r$$
$$A_1 = A_0 (1 + r)$$
$$A_1 = P(1 + r)$$

< □ >

Exponential

		Applications •000000000	

Suppose an initial amount of money (called the principal) P is invested at an annual interest rate r and **compounded** once a year. This means that at the end of the first year the earned interest is added to the principal creating a new balance A_1 :

$$A_0 = P$$
$$A_1 = A_0 + A_0 r$$
$$A_1 = A_0 (1 + r)$$
$$A_1 = P(1 + r)$$

< □ ▶

vv. Finch

Exponential

15 / 25

		Applications •000000000	

Suppose an initial amount of money (called the principal) P is invested at an annual interest rate r and **compounded** once a year. This means that at the end of the first year the earned interest is added to the principal creating a new balance A_1 :

$$A_0 = P$$

$$A_1 = A_0 + A_0 r$$

$$A_1 = A_0(1+r)$$

$$A_1 = P(1+r)$$

< □ >

W. Finch

Exponential

		Applications	

Notice the pattern of multiplying the principal by 1 + r each year.

Year	Balance After Compounding
0	$A_0 = P$
1	$A_1 = P(1+r)$
2	$A_2 = A_1(1+r) = P(1+r)(1+r) = P(1+r)^2$
3	$A_3 = A_2(1+r) = P(1+r)^2(1+r) = P(1+r)^3$
t	$A_t = P(1+r)^t$

		Applications	

Notice the pattern of multiplying the principal by 1 + r each year.

Year	Balance After Compounding
0	$A_0 = P$
1	$A_1 = P(1+r)$
2	$A_2 = A_1(1+r) = P(1+r)(1+r) = P(1+r)^2$
3	$A_3 = A_2(1+r) = P(1+r)^2(1+r) = P(1+r)^3$
t	$A_t = P(1+r)^t$

		Applications 000000000	

Notice the pattern of multiplying the principal by 1 + r each year.

 Year
 Balance After Compounding

 0
 $A_0 = P$

 1
 $A_1 = P(1+r)$

 2
 $A_2 = A_1(1+r) = P(1+r)(1+r) = P(1+r)^2$

 3
 $A_3 = A_2(1+r) = P(1+r)^2(1+r) = P(1+r)^3$

 :
 :

 t
 $A_t = P(1+r)^t$

		Applications 000000000	

Notice the pattern of multiplying the principal by 1 + r each year.

Year Balance After Compounding 0 $A_0 = P$ 1 $A_1 = P(1+r)$ 2 $A_2 = A_1(1+r) = P(1+r)(1+r) = P(1+r)^2$ 3 $A_3 = A_2(1+r) = P(1+r)^2(1+r) = P(1+r)^3$: . . t $A_t = P(1+r)^t$

< □ >

		Applications 000000000	

Notice the pattern of multiplying the principal by 1 + r each year.

YearBalance After Compounding0 $A_0 = P$ 1 $A_1 = P(1+r)$ 2 $A_2 = A_1(1+r) = P(1+r)(1+r) = P(1+r)^2$ 3 $A_3 = A_2(1+r) = P(1+r)^2(1+r) = P(1+r)^3$ \vdots \vdots t $A_t = P(1+r)^t$

< 🗆 🕨

		Applications	

The pattern of annual compounding can be modified to accommodate compounding more often (such as quarterly or monthly, for example) to produce the following **Formula for Compound Interest**:

$$A(t) = P\left(1+\frac{r}{n}\right)^{nt}$$

where

- t is time in years
- A(t) is the total amount after t years
- P is the initial principal
- r is the interest rate
- n is the number of times per year the interest is compounded

		Applications	

Suppose you get a summer internship that allows you to save \$5000 to be invested in an interest-bearing account. Calculate how much money you will have if you invest your money for 10 years at 7% and:

- 1. compound semiannually
- 2. compound quarterly
- 3. compound monthly
- 4. compound daily

		Applications	
		0000000000	

Exponential

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$
 (Compound Interest)

$$A(t) = P\left(1 + \frac{1}{\frac{n}{r}}\right)^{nt} \qquad \left(\frac{r}{n} = \frac{1}{n/r}\right)$$

$$A(t) = P\left(1 + \frac{1}{x}\right)^{(xr)t} \qquad \left(\frac{n}{r} = x \text{ and } n = xr\right)$$

< □ ▶

DHS Math	De
	9/2

		Applications	
		0000000000	

W. Finch Exponential

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$
 (Compound Interest)

$$A(t) = P\left(1 + \frac{1}{\frac{n}{r}}\right)^{nt} \qquad \left(\frac{r}{n} = \frac{1}{n/r}\right)$$

$$A(t) = P\left(1 + \frac{1}{x}\right)^{(xr)t} \qquad \left(\frac{n}{r} = x \text{ and } n = xr\right)$$

< □ ▶

DHS Math Dept

19 / 2!

		Applications	

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$
 (Compound Interest)

$$A(t) = P\left(1 + \frac{1}{\frac{n}{r}}\right)^{nt}$$
 $\left(\frac{r}{n} = \frac{1}{n/r}\right)^{nt}$

$$A(t) = P\left(1 + \frac{1}{x}\right)^{(xr)t}$$
 $\left(\frac{n}{r} = x \text{ and } n = xr\right)$

Image: Image:

DHS Math Dept

19 / 25

W. Finch

Exponential

		Applications	

$$A(t) = P\left(1 + \frac{1}{x}\right)^{xrt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$

$$(x = \frac{n}{r} \text{ and } n = xr)$$

(Power Prop Exp)

$$(\lim_{x\to\infty}(1+1/x)^x=e)$$

(Substitution)

< □ >

DHS Math Dept 20 / 25

W. Finch

Exponential

		Applications	

$$A(t) = P\left(1 + \frac{1}{x}\right)^{xrt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = Pe^{rt}$$

$$(x = \frac{n}{r} \text{ and } n = xr)$$

(Power Prop Exp)

 $(\lim_{x\to\infty}(1+1/x)^x=e)$

(Substitution)

Exponential

		Applications	

$$A(t) = P\left(1 + \frac{1}{x}\right)^{xrt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = Pe^{rt}$$

$$(x = \frac{n}{r} \text{ and } n = xr)$$

(Power Prop Exp)

$$(\lim_{x\to\infty}(1+1/x)^x=e)$$

(Substitution)

< □ >

W. Finch

Exponential

		Applications	

$$A(t) = P\left(1 + \frac{1}{x}\right)^{xrt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = P\left[\left(1 + \frac{1}{x}\right)^{x}\right]^{rt}$$
$$A(t) = Pe^{rt}$$

$$(x = \frac{n}{r} \text{ and } n = xr)$$

(Power Prop Exp)

$$(\lim_{x\to\infty}(1+1/x)^x=e)$$

(Substitution)

V. Finch

Exponential

HS Math Dept

		Applications	

If you increase the number of times you compound without bound (this means to infinity ... and beyond!) the **Formula for Compound Interest** becomes

$$A(t) = Pe^{rt}$$

where

- t = time in years
- A(t) is the total amount after t years
- P is the initial principal
- r is the interest rate
- e is the natural base

		Applications	

Suppose you get a summer internship that allows you to save \$5000 to be invested in an interest-bearing account. Calculate how much money you will have if you invest your money for 10 years at 7% if the interest could be calculated continuously.

		Applications	

A population is declining at a rate of 2.5% annually. The current population is approximately 11 million people. Assuming the population decline continues at this rate, predict the population after:

1. 30 years annual decay.

2. 30 years continuous decay.

		Applications	

Exponential

The table below shows the population growth of deer in a forest from 2000 to 2010.

Deer Population				
Year	Deer			
2000	125			
2010	264			

Assume an exponential rate of growth:

- 1. Identify the rate of increase.
- 2. Write an exponential equation to model this situation.
- 3. Predict the number of deer in 2020.

		Applications 000000000	Summary

What You Learned You can now:

- Recognize and evaluate exponential functions of base and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.
- Do problems Chap 3.1 #1, 3, 11-19 odd, 21, 25, 29, 31, 35, 37, 41, 43

		Applications 0000000000	Summary

You can now:

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.
- Do problems Chap 3.1 #1, 3, 11-19 odd, 21, 25, 29, 31, 35, 37, 41, 43

		Applications 0000000000	Summary

You can now:

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.
- Do problems Chap 3.1 #1, 3, 11-19 odd, 21, 25, 29, 31, 35, 37, 41, 43

		Applications 0000000000	Summary

You can now:

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.
- Do problems Chap 3.1 #1, 3, 11-19 odd, 21, 25, 29, 31, 35, 37, 41, 43

		Applications 0000000000	Summary

You can now:

- Recognize and evaluate exponential functions of base a and base e.
- Apply transformations to exponential functions and graph exponential functions of any base.
- Apply exponential functions to real-life situations.
- Do problems Chap 3.1 #1, 3, 11-19 odd, 21, 25, 29, 31, 35, 37, 41, 43