Name:	ANSWER KEY			#:	Class:	Date:	
	Exam #7 Review – Stoichiometry						
1.	1 mole is equal to	MOLAR	mass.	These units a	are in	GRAMS	This mass can be
	found on the PERI	ODIC	TABLE	_!			

- What is a mole ratio? What conversion is the mole ratio used for?
 <u>Mole Ratio</u> is the ratio of coefficients in a balanced chemical equation. This is used for mole to mole conversions (converting from moles of one substance to moles of another substance).
- 3. Pb(NO₃)₂ + 2NaI → PbI₂ + 2NaNO₃ What is the mole ratio between:
 a. NaI and PbI₂? = 2:1
 b. Pb(NO₃)₂ and NaNO₃? = 1:2
- 4. What is a limiting reactant? What is an excess reactant? The limiting reactant is the reactant that is used up first & limits the amounts of products that will be formed. (The limiting reactant determines how much product you can make.)

The **excess reactant** is the reactant(s) that you have more than enough of; will have some left over.

 What is the percent yield? What is the equation to calculate percent yield? Percent yield is a ratio between actual yield and theoretical yield to measure a chemical reaction's efficiency.

% Yield = $\left(\frac{\text{Actual}}{\text{Theoretical}}\right) \times 100$

6. How do you find the actual yield? How do you find the theoretical yield? **Actual yield** comes from doing the experiment (amount actually made).

Theoretical yield comes from calculations (amount possible to make).

 Suzi Struggles was in the lab following a procedure that she calculated would produce 16.15g of CaCO₃. When she finished her experiment, she ended up with 15.46g of CaCO₃. Calculate Suzi's percent yield of CaCO₃.

First, **identify the actual yield**. (Whatever is produced in the lab (what she ended up with) is the ACTUAL yield. In this case, it is **15.46 g of CaCO**₃.

Then, **identify the theoretical yield**, (whatever was calculated) which is **16.15 g of CaCO**₃. Plug these into the equation above for percent yield!

% yield = $\frac{15.46 \text{ g of CaCO}_3}{16.15 \text{ g of CaCO}_3} \times 100 = 95.73\%$

8. Balance: **1** C_2H_4 + **3** $O_2 \rightarrow$ **2** CO_2 + **2** H_2O If 45.71 grams of C_2H_4 react, how many moles of CO_2 will be produced?

45 71 a C-H	$1 \text{ mol } C_2 H_4$	$1 2 \text{ mol } CO_2$		
45.71 y C2H4	<u><u>+</u></u>		<u> </u>	- 3 26 mol CO.
	20.052		28.052	= 3.20 mor CO ₂
	$ 28.052 \text{ g } C_2H_4$	<u>1</u> mol C ₂ H ₄		

9. Balance: **1** C_3H_8 + **5** $O_2 \rightarrow$ **3** CO_2 + **4** H_2O

If 2.6 moles of C_3H_8 are used, how many grams of water are produced?

10. Balance: **2** Cu + **1** $O_2 \rightarrow$ **2** CuO

If 8.37 moles of Cu are used, how many moles of O₂ will also be used?

8 37 mol Cu	$1 \text{ mol } \Omega_2$		
	<u><u> </u></u>	<u> </u>	- 4 10 mol O
		- 2	= 4.19 mol O ₂
	1 <u>2</u> mol Cu	-	

11. Balance: **4** Fe + **3** $O_2 \rightarrow$ **2** Fe₂ O_3

a. If 12.47 grams of Fe are used, how many grams of Fe₂O₃ are produced?

12.47 g Fe	<u>1</u> mol Fe	2 mol Fe ₂ O ₃	<u>159.7</u> g Fe ₂ O ₃	3982.918
	<u>55.85</u> g Fe	<u>4</u> mol Fe	<u>1</u> mol Fe ₂ O ₃	- 223.4
				= 17.83 g Fe ₂ O ₃

b. 12.47 grams of Fe are used in this experiment and actually produced 15.64 grams of Fe_2O_3 . Using this information AND the answer from part A, calculate the percent yield of Fe_2O_3 .

