AP Chemistry Test (Chapter 12)

Which of the following is a kinetic quantity?

Enthalpy Gibb's free energy

Rate of reaction

Multiple Choice (40%)

A)

C)

E)

1)

2)

		 I) Can substances react when we put them together? II) If a reaction happens, how fast will it occur? III) What is the mechanism by which the reaction occurs? IV) If substances react, what energy changes occur? 							
	A) C) E)	I and I I and I I, III a	V		B) D)	II and IV II and III			
3)	One of the reactions that is used to produce gaseous hydrogen commercially follows. A proper expression for the rate of this reaction could be?								
		H_2O (g	g) + CO (g)	$\rightarrow H_2(g)$	$+ CO_2(g)$				
	A) <u>Δ</u>	$\Delta [CO_2]$ Δt	B) <u>-</u> -	<u>Δ[H₂]</u> Δt	C) k	D) <u>Δ[CO]</u> Δt		E) <u>Δ[H₂O]</u> Δt	
4)	Which	h of the f	Collowing rea	actions wou	ld be expected	d to be the slow	vest?		
	A) B) C) D) E)	3 H ⁺ (a Pb ²⁺ (a O (g)	$\begin{array}{l} + \text{CN}^{-}(\text{aq}) + \text{PO}_{4}^{3-} \\ + \text{Aq}) + \text{SO}_{4}^{2-} \\ + \text{O}(\text{g}) \rightarrow \\ + \text{O}(\text{g}) \rightarrow \end{array}$	$(aq) \rightarrow H_3$ $(aq) \rightarrow Pb$ $O_2(g)$	$_{3}PO_{4}$ (aq)				
5)	What can be said about the stoichiometric coefficients of a balanced chemical equation for reaction and the powers to which the concentrations are raised in the rate law expression?							-	l
 A) There is an exact relationship between the two. B) The powers can be equal to the number of molecules that are formed. C) The powers are equal to the number of molecules with effective collision fastest step of the reaction mechanism. 									
	D) Not much can be said except that there is no necessary relationship. E) The powers equal the coefficients of the equation.							p.	
6) Please consider the following gas phase reaction and its experimentally observed rat What is the overall order of the reaction?							bserved rate law.		
	wnat	is the ov	eran order c	or the reaction	A + B	\rightarrow C		$rate = k[A]^2[B]$	
	A)	1 st	B)	2 nd	C)	3 rd	D)	0 order	

B)

D)

Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

Internal Energy

Entropy

7)	Please consider the following gas phase reaction and its experimentally observed rate law. Which one would affect the value of the specific rate constant, k?									
		A + B -	→ C		rate = k[A] ² [B]			
	C) Chan	ging the co	temperature oncentration tion proceed	of B	Ι	3) O)			centration of A centration of C	
8)	The units of the rate constant for a second order reaction could be?									
	A) M ⁻¹ •s ⁻¹	B)	$M^{-2} \bullet s^{-1}$	C) N	$M \bullet s^{-1}$	D)	s^{-1}	E) M	$^{2} \bullet s^{-1}$	
9)		What are th	ne units of the						X and second eaction rate is	
		$X + 2 Y \rightarrow Products$								
	A) M•s ⁻¹	B) 1	$M^{-2} \bullet s^{-1}$	C) M	-3•s ⁻¹	D)	$M^2 \bullet s^{-1}$	E) M ⁻¹ •s ⁻¹	
10)	Please consider the following hypothetical reaction and its experimentally determined specific rate constant, k. What overall order is this reaction?									
	$X + Y \rightarrow Products$ $k = 0.255 s^{-1}$									
	A) 0 ordo C) 2 nd or E) Canno		mined		E I	3) O)	1 st order 3 rd order			
11)	Please consider the following hypothetical reaction and its experimentally determined specific rate constant, k. Which rate law expression could be correct?									
		X + Y	→ Product	S	k = 0.25	5 M ⁻³ r	min ⁻¹			
	C) rate =	k[X] ³ k[X][Y] k[X] ³ [Y]					rate = k[X rate = k	X] ² [Y]		
12)	Please consider the following gas phase reaction and its experimentally determined rate law expression. If the concentration of A is tripled and the concentration of B is doubled, the reaction rate would be increased by a factor of?									
		A + B -	→ C		rate = k[A] ² [B]			
	A) 6	B) 9	C) 12	D)	18	E)	36			

7)

- Which of the following statements is false? 13)
 - A) In order for a reaction to occur, reactant molecules must collide with each other.
 - According to the collision theory, a three-body collision is less likely than a two-B) body collision.
 - In reactions that are second order in one reactant and first order in another, the slow C) step generally involves a three-body collision of these reactants.
 - D) The transition state is a short-lived, high energy state, intermediate between reactants and products.
- 14) Which one is the rate law expression for this elementary, gas phase reaction?

$$NO_3 + CO \rightarrow NO_2 + CO_2$$

A)

rate = k[CO]B)

rate = $k[NO_3]^2$ rate = $k[NO_3]^2[CO]^2$ C)

rate = $k[NO_2][CO_2]$ D)

- E) rate = $k[NO_3][CO]$
- We are studying the following reaction. We make a plot of ln[A] vs. time as the reaction 15) proceeds. This plot turns out to be linear with a slope of -0.25. What is the rate law expression for this reaction?

$$2 A \rightarrow 3 B$$

rate = $0.25 \text{ s}^{-1} [A]$ rate = $0.25 \text{ M}^{-1} \text{s}^{-1} [A]^2$ A)

B) rate = $0.25 \text{ M}^{-1} \text{s}^{-1} \ln[\text{A}]$ D) rate = $-0.25 \text{ s}^{-1} [\text{A}]$

C)

- rate = $0.0625 \text{ M}^{-1} \text{s}^{-1} [\text{A}]^2$ E)
- Which graph illustrates a 2^{nd} order reaction, $A \rightarrow B$ 16)

B) 1/[A] t

Please use the following information to answer questions 17-20.

Step 1: $A + B \rightarrow C$

Step 2: $C + D \rightarrow E + 2 M$

Step 3: $D + E + B \rightarrow J$

- 17) Please write the overall, balanced reaction.
- 18) Please identify all intermediates.
- 19) Please identify the products.
- 20) Please identify the reactants.

Problems (60%) Please show all your work for any credit!!!

1) Please write the rate law expression for this reaction, based on the following experimental data.

$$NO + O_2 + N_2 \rightarrow Products$$

Experiment	Initial [NO] (M)	Initial [O ₂] (M)	Initial [N ₂] (M)	Initial Rate of Disappearance of NO (M/min)
1	0.100	0.150	0.250	7.99 X 10 ⁻⁴
2	0.100	0.450	0.250	2.40×10^{-3}
3	0.100	0.150	0.500	1.60 X 10 ⁻³
4	0.400	0.150	0.500	2.56 X 10 ⁻²

Please use the following experimental data to answer questions 2-3.

$$A + B + C \rightarrow Products$$

Experiment	Initial [A] (M)	Initial [B] (M)	Initial [C] (M)	Initial Rate of Reaction (M/s)
1	0.20	0.10	0.30	0.00798
2	0.20	0.30	0.40	0.0426
3	0.20	0.10	0.50	0.0222
4	0.30	0.10	0.60	0.0319

- 2) Please write the rate law expression for this reaction.
- What would be the initial rate of reaction if the initial concentration of A was 0.40 M, the initial concentration of B was 0.20 M and the initial concentration of C was 0.10 M?

4) Please write the rate law expression, using the following experimental data.

$$CO_2(g) \rightarrow C(s) + O_2(g)$$

Time (s)	$[CO_2](M)$
0.0	0.153
5.00	0.122
10.00	0.102
15.00	0.0872
20.00	0.0762

- 5) What is the half-life of this reaction? $2 \text{ A} \rightarrow \text{A}_2$ $k = 2.34 \text{ s}^{-1}$
- 6) Please consider this reaction:

$$2 \text{ NO}_2 (g) \rightarrow 2 \text{ NO} (g) + O_2 (g)$$
 rate = 0.103 M⁻¹ s⁻¹[NO₂]²

4.00 mol NO₂ is placed into a 6.00-L flask. What mass of O₂ is present after 1.80 s?

- Please consider this reaction: 2 NH_3 (g) \rightarrow N₂ (g) + 3 H_2 (g) $k = 1.21 \text{ M s}^{-1}$ 5.25 mol NH₃ is placed into a 3.00-L flask. How long will the reaction proceed to consume 80.0% of the original NH₃?
- 8) Please write the rate law for this reaction mechanism.

Step 1:
$$H_2 \leftrightarrow 2 H$$
 (Fast, equilibrium)

Step 2:
$$H + CO \rightarrow HCO$$
 (Slow)

Step 3:
$$H + HCO \rightarrow H_2CO$$
 (Fast)

Formulas:
$$t_{1/2} = \underline{[A]_0}$$
 $t_{1/2} = \underline{0.693}$ $t_{1/2} = \underline{1}$ $k[A]_0$

AP Chemistry	Test ((Chapter	12)
---------------------	--------	----------	-----

Name

Multiple Choice (40%)

1) ____

2) _____ 12) ____

3) _____ 13) ____

4) _____ 14) ____

5) ____ 15) ___ 6) ___ 16) ___

7) _____ 17) ____ 8) 18)

9) 19)

10) _____

<u>Problems (70%)</u> Please show all your work for any credit.

- 1) Please use only the front side of each piece of paper.
- 2) Please number your problems clearly and consecutively.
- 3) Please staple your problems to the back of this page in numerical order.
- 4) Please write on the paper in the conventional manner.
- 5) Please do not make a separate list of answers. Record your answer at the end of the work supporting your answer.
- 6) Please circle/box your answer to any problems.

AP Chemistry Test (Chapter 12)

Name Key

Multiple Choice (40%)

1) E

11) E

2) C

12) D

3) B

13) D

4) B

14) E

5) D

15) A

6) C

16) B

7) A

17) $A + 2B + 2D \rightarrow 2M + J$

8) A

18) C E

9) B

19) M J

10) B

20) ABD

Problems (60%)

1) rate = $2.13 \text{ M}^{-3} \text{min}^{-1} [\text{NO}]^2 [\text{O}_2] [\text{N}_2]$

2) rate = $0.89 \text{ M}^{-2}\text{s}^{-1} [\text{B}][\text{C}]^2$

3) 0.0018 M/s

4) rate = $0.329 \text{ M}^{-1} \text{s}^{-1} [\text{CO}_2]^2$

5) 1st order!! 0.296 s

6) 2^{nd} order!! 7.04 g

7) 0th order!! 1.16 s

8) rate = $k [H_2]^{1/2} [CO]$