- The rows on the periodic chart are periods.
- Columns are groups.
- Elements in the same group have similar chemical properties.

	1A																	8A
1	1 1 H	2A											3A	4A	5A	6A	7A	18 2
ļ	п	2											13	14	15	16	17	He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3B 3	${}^{4\mathrm{B}}_{4}$	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		118
		Metal	ls	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
		Metalloids		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	
		Nonn	netals															2

Groups

Group	Name	Elements
1A	Alkali metals	Li, Na, K, Rb, Cs, Fr
2A	Alkaline earth metals	Be, Mg, Ca, Sr, Ba, Ra
6A	Chalcogens	O, S, Se, Te, Po
7A	Halogens	F, Cl, Br, I, At
8A	Noble gases (or rare gases)	He, Ne, Ar, Kr, Xe, Rn

These five groups are known by their names.

	1A																	8A
1	1 1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	18 2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 A1	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		118
		Metal	s	57	58	59	60	61	62	63	64	65	66	67	68	69	70	
		Metal		La 89 Ac	Ce 90 Th	Pr 91 Pa	Nd 92 U	Pm 93 Np	Sm 94 Pu	Eu 95 Am	Gd 96 Cm	Tb 97 Bk	Dy 98 Cf	Ho 99 Es	Er 100 Fm	Tm 101 Md	Yb 102 No	

Nonmetals are on the right side of the periodic table (with the exception of H).

Nonmetals

	1A 1																	8A
1	1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	18 2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		118
		Metal	S	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
		Metal	loids	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	

Nonmetals

Metalloids border the stair-step line (with the exception of Al, Po, and At).

	1A 1	1																8A 18
1	1 H	2A 2	_										3A 13	4A 14	5A 15	6A 16	7A 17	2 He
2	3 Li	4 Be							0.0				5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		118
	- 	Meta	ls	57	58	59	60	61	62	63	64	65	66	67	68	69	70]
			lloids	La 89 Ac	Ce 90 Th	Pr 91 Pa	Nd 92 U	Pm 93 Np	Sm 94 Pu	Eu 95 Am	Gd 96 Cm	Tb 97 Bk	Dy 98 Cf	Ho 99 Es	Er 100 Fm	Tm 101 Md	Yb 102 No	

Nonmetals

on the left side of the chart.

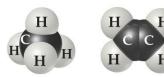
Metals are

Atoms, Molecules,

and Ions

Chemical Formulas

Hydrogen, H₂



Water, H₂O

- Carbon monoxide, CO
- Carbon dioxide, CO₂

Methane, CH_4

 C_2H_4

The subscript to the right of the symbol of an element tells the number of atoms of that element in one molecule of the compound.

Chemical Formulas

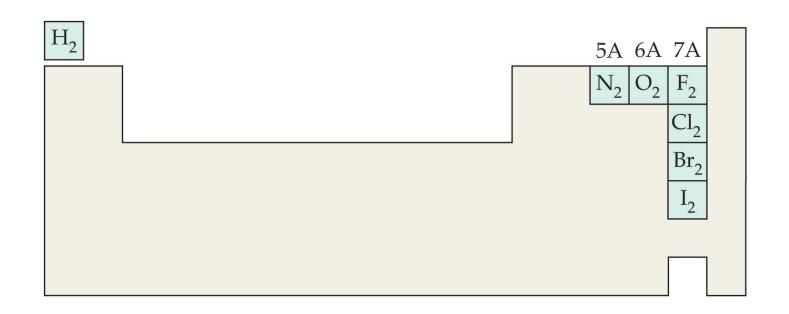
0 0

Hydrogen, H₂

Oxygen, O₂

Water, H₂O

Carbon monoxide, CO Carbon dioxide, CO₂


Methane, CH_4

 C_2H_4

Molecular compounds are composed of molecules and almost always contain only nonmetals.

Diatomic Molecules

These seven elements occur naturally as molecules containing two atoms.

Types of Formulas

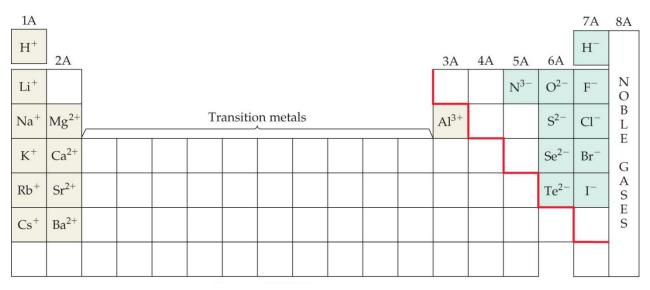
- Empirical formulas give the lowest whole-number ratio of atoms of each element in a compound.
- Molecular formulas give the exact number of atoms of each element in a compound.

Types of Formulas

Structural formula

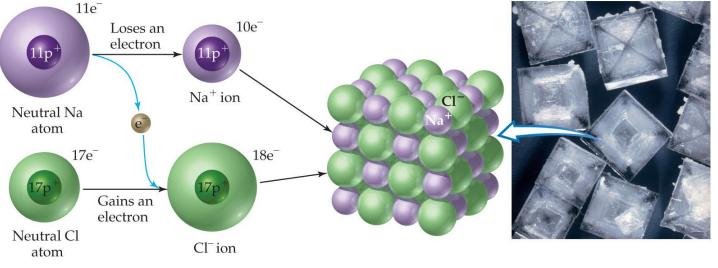
Perspective drawing

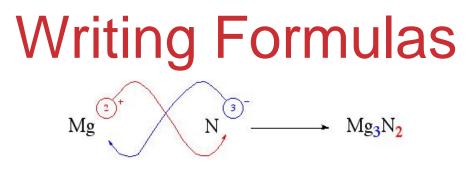
Ball-and-stick model



Space-filling model

- Structural formulas show the order in which atoms are bonded.
- Perspective drawings also show the three-dimensional array of atoms in a compound.


lons


- When atoms lose or gain electrons, they become ions.
 - Cations are positive and are formed by elements on the left side of the periodic chart.
 - Anions are negative and are formed by elements on the right side of the periodic chart.

Ionic Bonds

Ionic compounds (such as NaCI) are generally formed between metals and nonmetals.

- Because compounds are electrically neutral, one can determine the formula of a compound this way:
 - The charge on the cation becomes the subscript on the anion.
 - The charge on the anion becomes the subscript on the cation.
 - If these subscripts are not in the lowest wholenumber ratio, divide them by the greatest common factor.

and Ions

Common Cations

Charge	Formula	Name	Formula	Name
1+	\mathbf{H}^+	Hydrogen ion	NH4 ⁺	Ammonium ion
	Li^+	Lithium ion	Cu ⁺	Copper(I) or cuprous ion
	Na^+	Sodium ion		
	\mathbf{K}^+	Potassium ion		
	Cs^+	Cesium ion		
	Ag^+	Silver ion		
2+	Mg ²⁺	Magnesium ion	Co ²⁺	Cobalt(II) or cobaltous ion
	Ca ²⁻	Calcium ion	Cu ²⁺	Copper(II) or cupric ion
	Sr^{2+}	Strontium ion	Fe ²⁺	Iron(II) or ferrous ion
	Ba^{2+}	Barium ion	Mn ²⁺	Manganese(II) or manganous ion
	Zn^{2+}	Zinc ion	Hg_2^{2+}	Mercury(I) or mercurous ion
	Cd^{2+}	Cadmium ion	Hg ²⁺	Mercury(II) or mercuric ion
			Ni ²⁺	Nickel(II) or nickelous ion
			Pb ²⁺	Lead(II) or plumbous ion
			Sn ²⁺	Tin(II) or stannous ion
3+	A1 ³⁺	Aluminum ion	Cr ³⁺	Chromium(III) or chromic ion
			Fe ³⁺	Iron(III) or ferric ion

*The most common ions are in boldface.

Common Anions

Charge	Formula	Name	Formula	Name
1-	H^{-}	Hydride ion	CH_3COO^- (or C ₂ H ₃ O ₂ ⁻)	Acetate ion
	\mathbf{F}^{-}	Fluoride ion	ClO_3^{-1}	Chlorate ion
	Cl^{-}	Chloride ion	ClO ₄ ⁻	Perchlorate ion
	Br^{-}	Bromide ion	NO ₃ ⁻	Nitrate ion
	I^-	Iodide ion	MnO_4^-	Permanganate ion
	CN^{-}	Cyanide ion		0
	OH^-	Hydroxide ion		
2-	O ^{2–}	Oxide ion	CO ₃ ^{2–}	Carbonate ion
	${{\rm O_2}^{2-}} {{\rm S}^{2-}}$	Peroxide ion	CrO_4^{2-}	Chromate ion
	\mathbf{S}^{2-}	Sulfide ion	$Cr_2O_7^{2-}$	Dichromate ion
			$\begin{array}{c} \text{CO}_{3}^{2-} \\ \text{CrO}_{4}^{2-} \\ \text{Cr}_{2}\text{O}_{7}^{2-} \\ \text{SO}_{4}^{2-} \end{array}$	Sulfate ion
3-	N ³⁻	Nitride ion	PO4 ³⁻	Phosphate ion

* The most common ions are in boldface.

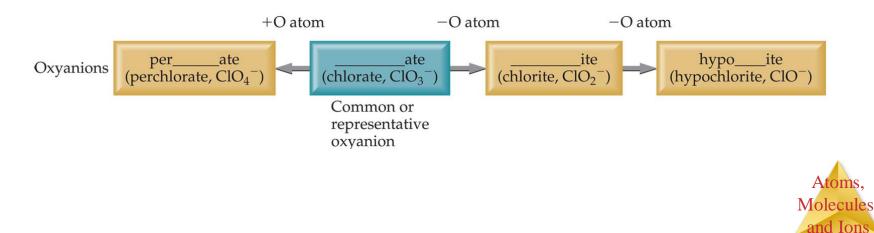

Inorganic Nomenclature

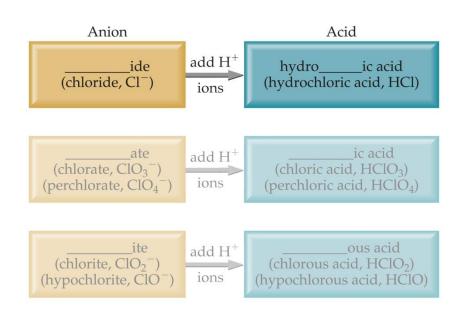
- Write the name of the cation.
- If the anion is an element, change its ending to -*ide*; if the anion is a polyatomic ion, simply write the name of the polyatomic ion.
- If the cation can have more than one possible charge, write the charge as a Roman numeral in parentheses.

Patterns in Oxyanion Nomenclature

- When there are two oxyanions involving the same element:
 - The one with fewer oxygens ends in -ite.
 - NO₂⁻: nitrite; SO₃²⁻: sulfite
 - The one with more oxygens ends in -ate.
 - NO_3^- : nitrate; SO_4^{2-} : sulfate

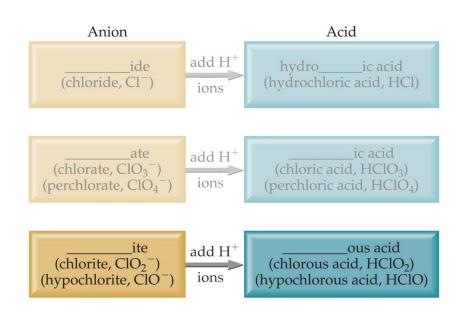
Patterns in Oxyanion Nomenclature


- The one with the second fewest oxygens ends in -*ite*.
 -ClO₂⁻: chlorite
- The one with the second most oxygens ends in *-ate.* $-CIO_3^-$: chlorate

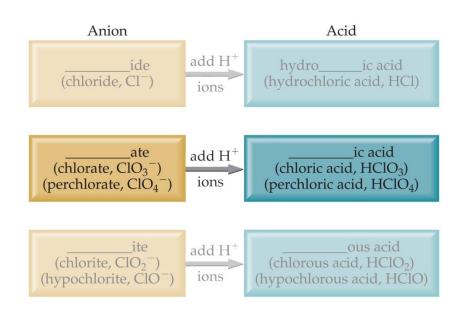

Patterns in Oxyanion Nomenclature

- The one with the fewest oxygens has the prefix hypoand ends in -*ite*.
 - CIO⁻: hypochlorite
- The one with the most oxygens has the prefix *per* and ends in -*ate*.

 $-ClO_4^-$: perchlorate


Acid Nomenclature

- If the anion in the acid ends in -*ide*, change the ending to -*ic acid* and add the prefix *hydro*-.
 - HCI: hydrochloric acid
 - HBr: hydrobromic acid
 - HI: hydroiodic acid


Acid Nomenclature

- If the anion in the acid ends in -*ite*, change the ending to -*ous* acid.
 - HCIO: hypochlorous acid
 - HClO₂: chlorous acid

Acid Nomenclature

- If the anion in the acid ends in -ate, change the ending to -ic acid.
 - HClO₃: chloric acid
 - HClO₄: perchloric acid

Nomenclature of Binary Compounds

Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

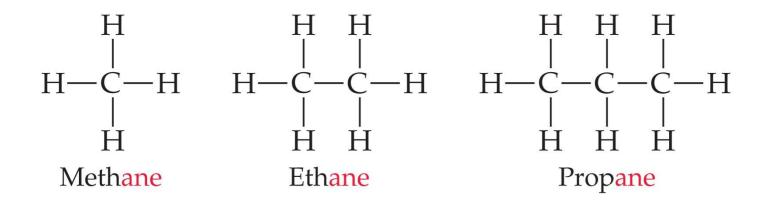
- The less electronegative atom is usually listed first.
- A prefix is used to denote the number of atoms of each element in the compound (*mono*- is not used on the first element listed, however).

Nomenclature of Binary Compounds

Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

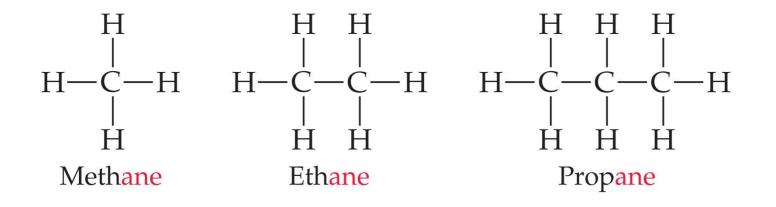
- The ending on the more electronegative element is changed to -*ide*.
 - CO₂: carbon dioxide
 - CCl₄: carbon tetrachloride

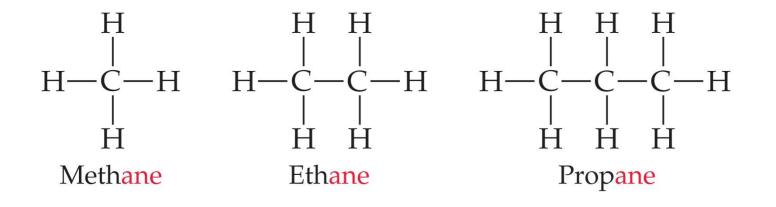


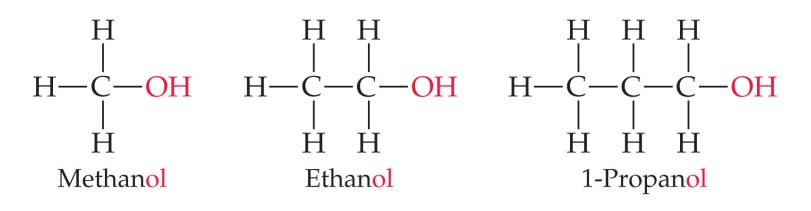

Nomenclature of Binary Compounds

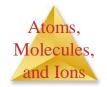
Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

 If the prefix ends with a or o and the name of the element begins with a vowel, the two successive vowels are often elided into one.


N₂O₅: dinitrogen pentoxide


- Organic chemistry is the study of carbon.
- Organic chemistry has its own system of nomenclature.


The simplest hydrocarbons (compounds containing only carbon and hydrogen) are alkanes.



The first part of the names above correspond to the number of carbons (*meth-* = 1, *eth-* = 2, *prop-* = 3, etc.).

- When a hydrogen in an alkane is replaced with something else (a functional group, like -OH in the compounds above), the name is derived from the name of the alkane.
- The ending denotes the type of compound.
 - An alcohol ends in -ol.

