STAAR ALGEBRA II
 REFERENCE MATERIALS

GENERAL FORMULAS

Slope of a line

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

FACTORING

Difference of squares

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

Difference of cubes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Sum of cubes

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

LOGARITHMS

Product

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y
$$

Quotient

$$
\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y
$$

Power

$$
\log _{b}\left(x^{r}\right)=r \log _{b} x
$$

CONIC SECTIONS

General form

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

Circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Parabola

$$
(x-h)^{2}=4 p(y-k) \quad(y-k)^{2}=4 p(x-h)
$$

Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1
$$

Hyperbola

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

STAAR ALGEBRA II
 REFERENCE MATERIALS

CIRCUMFERENCE

Circle
$C=2 \pi r$
or
$C=\pi d$

AREA

Triangle

$$
A=\frac{1}{2} b h
$$

Rectangle or parallelogram

$$
A=b h
$$

Rhombus	$A=\frac{1}{2} d_{1} d_{2}$
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Regular polygon

$$
A=\frac{1}{2} a P
$$

Circle

$$
A=\pi r^{2}
$$

SURFACE AREA

	Lateral	Total
Prism	$S=P h$	$S=P h+2 B$
Pyramid	$S=\frac{1}{2} P l$	$S=\frac{1}{2} P l+B$
Cylinder	$S=2 \pi r h$	$S=2 \pi r h+2 \pi r^{2}$
Cone	$S=\pi r l$	$S=\pi r l+\pi r^{2}$
Sphere		$S=4 \pi r^{2}$
VOLUME		

Prism or cylinder $V=B h$

Pyramid or cone

$$
V=\frac{1}{3} B h
$$

Sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

