STAAR ALGEBRA II REFERENCE MATERIALS

GENERAL FORMULAS

Slope of a line	$m = \frac{y_2 - y_1}{y_2 - y_1}$
	$X_2 - X_1$

Quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

FACTORING

Difference of squares	$a^2 - b^2 = (a - b)(a + b)$

Difference of cubes
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Sum of cubes
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

LOGARITHMS

Product
$$\log_b(xy) = \log_b x + \log_b y$$

Quotient
$$\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y$$

Power
$$\log_b(x^r) = r \log_b x$$

CONIC SECTIONS

General form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Circle
$$(x - h)^2 + (y - k)^2 = r^2$$

Parabola
$$(x - h)^2 = 4p(y - k)$$
 $(y - k)^2 = 4p(x - h)$

Ellipse
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$$

Hyperbola
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

STAAR ALGEBRA II REFERENCE MATERIALS

CIRCUMFERENCE			
Circle	$C = 2\pi r$	or	$C = \pi d$
AREA			
Triangle			$A = \frac{1}{2}bh$
Rectangle or parallelogram			A = bh
Rhombus			$A = \frac{1}{2}d_1d_2$
Trapezoid			$A = \frac{1}{2}(b_1 + b_2)h$
Regular polygon			$A=\frac{1}{2}aP$
Circle			$A = \pi r^2$
SURFACE AREA			
JONI AGE AINEA			
SORI MOL AIREA	Lateral		Total
Prism	Lateral $S = Ph$		Total $S = Ph + 2B$
Prism	S = Ph		S = Ph + 2B
Prism Pyramid	$S = Ph$ $S = \frac{1}{2}Pl$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$
Prism Pyramid Cylinder	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$
Prism Pyramid Cylinder Cone	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Prism Pyramid Cylinder Cone Sphere	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$
Prism Pyramid Cylinder Cone Sphere VOLUME	$S = Ph$ $S = \frac{1}{2}Pl$ $S = 2\pi rh$		$S = Ph + 2B$ $S = \frac{1}{2}Pl + B$ $S = 2\pi rh + 2\pi r^{2}$ $S = \pi rl + \pi r^{2}$ $S = 4\pi r^{2}$