Disposable Income

Net Income

Paycheck

After-tax income

Marginal Propensity to Consume (MPC)

• The fraction of any change in disposable income that is consumed.

- MPC= <u>Change in Consumption</u> Change in Disposable Income
- MPC = $\Delta C / \Delta DI$

Marginal Propensity to Save (MPS)

• The fraction of any change in disposable income that is saved.

- MPS= <u>Change in Savings</u> Change in Disposable Income
- MPS = $\Delta S / \Delta DI$

Marginal Propensities

- $\bullet MPC + MPS = 1$
 - -.: MPC = 1 MPS
 - -.: MPS = 1 MPC
- Remember, people do two things with their disposable income, consume it or save it!

The Spending Multiplier Effect

 An initial change in spending (C, I_G, G, X_N) causes a larger change in aggregate spending, or Aggregate Demand (AD).

 Multiplier = <u>Change in AD</u> Change in Spending
 Multiplier = ^{Δ AD}/_{Δ C, I, G, or Xn}

The Spending Multiplier Effect •Why does this happen? -Expenditures and income flow continuously which sets off a spending increase in the economy.

The Spending Multiplier Effect

-Ex. If the government increases defense spending by \$1 Billion, then defense contractors will hire and pay more workers, which will increase aggregate spending by more than the original \$1 Billion.

Calculating the Spending Multiplier

- The Spending Multiplier can be calculated from the MPC or the MPS.
- Multiplier = $1/_{1-MPC}$ or $1/_{MPS}$
- Multipliers are (+) when there is an increase in spending and (-) when there is a decrease

Calculating the Tax Multiplier

- When the government taxes, the multiplier works in reverse
- Why?
 - Because now money is leaving the circular flow
- Tax Multiplier (note: it's negative)
 -^{MPC}/_{1-MPC} or -^{MPC}/_{MPS}
- If there is a tax-CUT, then the multiplier is +, because there is now more money in the circular flow

MPS, MPC, & Multipliers

- Ex. Assume U.S. citizens spend 90¢ for every extra \$1 they earn. Further assume that the real interest rate (r%) decreases, causing a \$50 billion increase in gross private investment. Calculate the effect of a \$50 billion increase in I_G on U.S. Aggregate Demand (AD).
 - Step 1: Calculate the MPC and MPS
 - MPC = $\Delta C /_{\Delta DI} = .9 /_1 = .9$
 - MPS = 1 MPC = <u>.10</u>
 - Step 2: Determine which multiplier to use, and whether it's + or -
 - The problem mentions an increase in Δ I_G.: use a (+) spending multiplier
 - Step 3: Calculate the <u>Spending</u> and/or Tax Multiplier

• $1/_{MPS} = 1/_{.10} = 10$

- Step 4: Calculate the Change in AD
 - (Δ C, I_G, G, or X_N) * Spending Multiplier
 - (\$50 billion ΔI_G) * (10) = <u>\$500 billion $\Delta AD</u></u>$

MPS, MPC, & Multipliers

- Ex. Assume Germany raises taxes on its citizens by €200 billion. Furthermore, assume that Germans save 25% of the change in their disposable income. Calculate the effect the €200 billion change in taxes on the German economy.
 - Step 1: Calculate the MPC and MPS
 - MPS = 25%(given in the problem) = <u>.25</u>
 - MPC = 1 MPS = 1 .25 = <u>.75</u>
 - Step 2: Determine which multiplier to use, and whether it's + or -
 - The problem mentions an increase in T.: use (-) tax multiplier
 - Step 3: Calculate the Spending and/or Tax Multiplier
 - $-MPC/_{MPS} = -.75/_{.25} = -.3$
 - Step 4: Calculate the Change in AD
 - (Δ Tax) * Tax Multiplier
 - ($\in 200$ billion Δ T) * (-3) = - $\in 600$ billion Δ in AD

MPS, MPC, & Multipliers

- Ex. Assume the Japanese spend ⁴/₅ of their disposable income. Furthermore, assume that the Japanese government increases its spending by ¥50 trillion and in order to maintain a balanced budget simultaneously increases taxes by ¥50 trillion. Calculate the effect the ¥50 trillion change in government spending and ¥50 trillion change in taxes on Japanese Aggregate Demand.
 - Step 1: Calculate the MPC and MPS
 - MPC = $\frac{4}{5}$ (given in the problem) = <u>.80</u>
 - MPS = 1 MPC = 1 .80 = <u>.20</u>
 - Step 2: Determine which multiplier to use, and whether it's + or -
 - The problem mentions an increase in G and an increase in T.: combine a (+) spending with a (-) tax multiplier
 - Step 3: Calculate the <u>Spending and Tax</u> Multipliers
 - Spending Multiplier = $1/_{MPS} = 1/_{.20} = 5$
 - Tax Multiplier = $-MPC/_{MPS} = -.80/_{.20} = -.4$
 - Step 4: Calculate the Change in AD
 - [ΔG * Spending Multiplier] + [ΔT * Tax Multiplier]
 - [(¥50 trillion Δ G) * 5] + [(¥50 trillion Δ T) * -4]
 - [± 250 trillion] + [± 200 trillion] = ± 50 trillion $\triangle AD$

The Balanced Budget Multiplier

- That last problem was a pain, wasn't it?
- Remember when Government Spending increases are matched with an equal size increase in taxes, that the change ends up being = to the change in Government spending
- Why?

•
$$1/_{MPS} + -MPC/_{MPS} = 1 - MPC/_{MPS} = MPS/_{MPS} = 1$$

• The balanced budget multiplier always = 1